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Shoaling solitary internal waves are ubiquitous features in the coastal regions of
the world’s oceans where waves with a core of recirculating fluid (trapped cores)
can provide an effective transport mechanism. Here, numerical evidence is presented
which suggests that there is a close connection between the limiting behaviour of
large-amplitude solitary waves and the formation of such waves via shoaling. For
some background states, large-amplitude waves are broad, having a nearly horizontal
flow in their centre. The flow in the centre of such waves is called a conjugate flow.
For other background states, large-amplitude waves can reach the breaking limit, at
which the maximum current in the wave is equal to the wave’s propagation speed.
The presence of a background current with near-surface vorticity of the same sign as
that induced by the wave can change the limiting behaviour from the conjugate-flow
limit to the breaking limit. Numerical evidence is presented here which suggests that
if large solitary waves cannot reach the breaking limit in the shallow water, that is if
the background flow has a conjugate flow, then waves with trapped cores will not be
formed via shoaling. It is also shown that, due to a change in the limiting behaviour
of large waves, an appropriate background current can enable the formation of waves
with trapped cores in stratifications for which such waves are not formed in the
absence of a background current.

1. Introduction
Shoaling internal solitary waves (ISWs) are common in coastal regions of the world’s

oceans where waves with trapped cores can provide a very effective mechanism for
the transport of fluid. Hence, it is of interest to determine the conditions under
which such waves can be formed. In an earlier investigation of shoaling ISWs, Lamb
(2002) focused on stratifications which monotonically increased in strength towards
the surface. No background currents were present. It was found that sufficiently large
deep-water solitary waves formed waves with trapped cores in the shallow water.
Grue et al. (2000) performed laboratory experiments using a continuous monotonic
stratification consisting of a layer of fluid with constant buoyancy frequency overlying
a homogeneous layer. They reported the formation of waves with maximum velocities
exceeding the wave propagation speed. This suggests the presence of a trapped core,
although waves may not have reached a final steady state. Solitary internal waves with
trapped cores have been observed in the ocean off the coast of oregon under conditions
with stratification close to the surface (D. Farmer, personal communication).

In his numerical simulations of shoaling waves, Lamb (2002) modified an expo-
nential stratification by adding a thin surface mixed layer and found that waves
with trapped cores were no longer formed. He suggested that the inhibition of the
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formation of waves with trapped cores by the surface mixed layer is associated with a
change in the limiting behaviour of large-amplitude solitary waves. In the presence of
the surface mixed layer, the shallow-water stratification has a non-breaking conjugate
flow of depression. That is, large solitary waves in shallow water become horizontally
uniform in their centre. As the energy in the wave increases waves become longer,
while the wave amplitude, maximum horizontal velocity Umax and wave propagation
speed c asymptote to constant values with Umax/c < 1. If this occurs ISWs are said to
conjugate-flow limited. In contrast, for the monotonic stratifications, which were the
focus of the paper, amplitudes of solitary waves with open streaklines (streamlines in
a reference frame moving with the wave) are limited by the breaking limit at which
Umax/c = 1.

The reason for the significant difference in the limiting behaviour of large waves
for the exponential stratification with and without a surface mixed layer is that in the
mixed layer there is no mechanism for the generation of vorticity. In the centre of a
large solitary wave of depression the surface mixed layer is stretched in the vertical,
resulting in a much thicker layer of low vorticity. Hence the presence of a thin
surface mixed layer can significantly modify the near-surface velocity field in a large
solitary wave of depression. In particular, the near-surface velocity, and hence Umax,
at the centre of the solitary wave is significantly reduced. This results in waves in the
mixed layer stratification being conjugate-flow limited whereas for the exponential
stratification, solitary waves could reach the breaking limit. This explanation for
the change in limiting behaviour also suggests that the limiting behaviour of large-
amplitude ISWs of depression is sensitive to the presence of near-surface vorticity in
the background flow.

Here, numerical evidence is presented which is consistent with the hypothesis that
waves with trapped cores cannot be formed if a conjugate flow with open streaklines
exists. Only waves of depression are considered. Such evidence is provided for a family
of stratifications with and without a background current. It is also shown that the
presence of a background sheared current, with near-surface vorticity of the same sign
as the wave-induced vorticity, can enable the formation of waves with trapped cores
in a stratification that cannot support such waves in the absence of a background
current. This change in the shoaling behaviour is believed to be a consequence of the
fact that the background current changes the limiting behaviour of large ISWs with
open streaklines from the conjugate flow limit to the breaking limit.

The plan of the paper is as follows. In § 2 the equations of motion are presented
in nondimensional form and the numerical models and the model stratifications and
background currents used are described. In § 3 the effects of background currents
on the existence of conjugate flows is investigated, as this is the criterion relevant to
the formation of waves with cores. Section 4 presents the results of the numerical
simulations of shoaling waves. A summary is given in § 5.

2. Governing equations and the numerical model
A schematic of the model setup indicating the meaning of the key parameters used

for the topography, stratification and background velocity is given in figure 1.
The model equations used in this study are the incompressible Euler equations

under the Boussinesq approximation, whereby in the momentum equation the density
is replaced by a constant representative value ρ0 except when multiplied by g∗, the
gravitational acceleration. The equations are non-dimensionalized using the shallow-
water depth D as the length scale, the shallow-water, mode-1, linear long-wave
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Figure 1. Schematic of the model setup. The model is initialized with a single internal solitary
wave in the deep water which propagates to the right into shallower water. In the background
current U (z) the vorticity changes to a constant value at z = s2 over a distance of 2s1. The
pycnocline is centred at z0 and has a thickness of 2d . The shelf amplitude has amplitude aT

(equal to 1.5 in this figure) and half-width L.

propagation speed Ū = N̄D/π=
√

g∗δρD/π as the velocity scale, and the advective
time scale D/Ū . Here ρ0δρ is representative of the density change over the water
column and Ū would be the propagation speed if the undisturbed density varied lin-
early. Thus, using standard terminology and starred/unstarred variables to represent
the dimensional/non-dimensional variables, we set

(x∗, z∗) =D(x, z), (u∗, W ∗) = Ū (u, w), t∗ =
D

Ū
t, (1a)

ρ∗ = ρ0(1 + δρρ), p∗ = ρ0(−g∗z∗ + Ū 1p). (1b)

The non-dimensional governing equations are then

U t + U · ∇U = −∇p − ρπ2 k̂, (2a)

ρt + U · ∇ρ = 0, (2b)

∇ · U = 0. (2c)

The rigid-lid approximation is made which removes surface waves from the prob-
lem. The surface is at z = 1 and the bottom is at

z = h(x) = −aT

2

(
1 − tanh

(
x

L

))
, (3)

where aT and L are positive parameters determining the shelf amplitude and shelf
width. The total water depth 1 − h(x) decreases monotonically from 1 + aT in the
deep water for x � −L to the shallow-water depth of 1 for x � L.

For the undisturbed density field, stratifications consisting of a single pycnocline,
given by the two-parameter family

ρ̄(z) = −0.5 tanh

(
z − z0

d

)
, (4)

are used.
As discussed in the introduction, it seems reasonable that a background flow

with near-surface vorticity of the same sign as that generated in the solitary wave
by baroclinicity can result in breaking waves for stratifications that would have
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conjugate-flow-limited waves in the absence of such a current. We explore this idea
by considering the effects of a background current with near-surface vorticity. In
order to avoid the complication of wave generation by the background current as it
flows over the shelf slope, a surface-trapped background current is used. It has the
form

U (z) =
ζ

2

(
z − s2 + s1 ln

(
cosh

(
z − s2

s1

)))
, (5)

which has vorticity

U ′(z) =
ζ

2

(
1 + tanh

(
z − s2

s1

))
. (6)

The background velocity is zero for large −z, undergoing a smooth transition to a
constant sheared flow at z = s2. The value of s1 > 0 determines the width of the
transition region. Values of s1 and s2 are chosen to ensure that U (z) is negligibly
small near and below the top of the shelf at z = 0. In the ocean solitary internal waves
are predominantly generated by tidal flow over topographic features. We ignore such
currents as the goal here is to understand the conditions under which waves with
trapped cores may exist.

The numerical model used to solve (2a–c) is the terrain-following coordinate model
described in Lamb (1994, 2002). Rotation is not included for these simulations. All
model runs use evenly spaced grid points in the horizontal with a grid spacing δx.
There are J grid points in the vertical. Usually J = 120 but a few runs with J =150
and 200 were made for some marginal cases. In the shallow water a variable vertical
grid spacing δz has been used, with δz decreasing quadratically towards the surface
in the shallow water. This provides higher resolution in regions where wave breaking
occurs. In the shallow water the vertical resolution is about 0.01325 at the bottom
and 0.0034 at the surface when J = 120. In the deep-water region, where the initial
wave is added, δz is vertically uniform.

The model is initialized with a single ISW. In a reference frame moving with the
ISW the flow is steady and the equations of motion can be written as†

∇2η +
U ′(z − η)

c − U (z − η)

(
η2

x + (1 − ηz)
2 − 1

)
+

N 2(z − η)

(c − U (z − η))2
η = 0. (7)

This is the well-known Dubreil–Jacotin–Long (DJL) equation written in terms of
η(x, z), the vertical displacement of the streamline passing through (x, z) relative to
its far-upstream height. Here c is the unknown wave propagation speed and

N 2(z) = −π2ρ̄ ′(z) (8)

is the square of the buoyancy frequency outside the wave. For the simulations of
shoaling solitary waves the initial wave is in the deep water. The boundary conditions
appropriate for a solitary wave are

η = 0 at z = −aT , 1 and η → 0 as x → ±∞. (9)

To calculate an ISW numerically, it is approximated by setting η = 0 at x = x0 ± R

where x0 is the position of the wave and R is large compared with the wave width.
Equation (7) is solved using a method based on the variational technique developed
by Turkington, Eydeland & Wang (1992) which has been generalized to include

† If the Boussinesq approximation is not made the coefficient of the second term becomes
U ′(z − η)/(c − U (z − η)) + N2(z − η)/2π2.
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a specified background current (Stastna & Lamb 2002). The wave amplitude is
determined by specifying the available potential energy (APE) of the solitary wave.
Other authors investigating ISWs have used different techniques to solve the DJL
equation (Davis & Acrivos 1967; Tung, Chan & Kubota 1982; Brown & Christie
1998; Grue et al. 2000) in the absence of a background current. Several authors
have also calculated fully nonlinear solitary waves in two-layer fluids and investigated
the limiting forms for such waves (Mehrotra & Kelly 1973; Holyer 1979; Saffman
& Yuen 1982; Amick & Turner 1986; Turner & Vanden-Broeck 1986; Grue et al.
1997, 1999). In the Boussinesq limit, broad waves with a conjugate flow are formed
in fluids of finite depth. Melville & Helfrich (1987) have shown how such waves
may be generated by a time-varying transcritical flow over a bump. They used the
forced extended KdV equation in the context of a two-layer fluid. The same evolution
equation arises for continuous stratifications, hence qualitatively similar results are
expected for at least those stratifications for which the weakly nonlinear theory is
valid. When the Boussinesq approximation is not made and the two layers have large
density differences, waves past the breaking limit (Umax = c) can be formed which
have overhangs (Holyer 1979; Saffman & Yuen 1982; Amick & Turner 1986; Turner
& Vanden-Broeck 1986, 1988).

Once η and c are known the density and velocity fields are given by

ρ(x, z) = ρ̄(z − η(x, z)), (10)

and

(u, w) = (c − U (z − η)) (ηz − 1, −ηx). (11)

Here, u is the total horizontal velocity in the reference frame moving with the wave.
The wave-induced horizontal velocity uw is obtained by subtracting the background
flow U (z) − c.

The wave amplitude, ηmax, is defined as the magnitude of the maximum isopycnal
displacement. Waves with open streaklines are limited in amplitude in one of three
ways (Lamb 2002). Two of these, the breaking limit and the conjugate-flow limit, were
discussed in the introduction. Waves can become unstable before either of these limits
are reached, giving the third amplitude limitation. For a more complete discussion
see Lamb (2002).

The horizontally uniform flow in the centre of long flat waves is called a conjugate
flow (Benjamin 1966; Mehrotra & Kelly 1973; Lamb & Wan 1998). In the centre of
a flat-centred wave η becomes independent of x. Equation (7) then reduces to (Lamb
2000)

η′′ +
U ′(z − η)

c − Ū (z − η)
η′(η′ − 2) +

N2(z − η)

(c − Ū (z − η))2
η = 0. (12)

We will be concerned with the existence of conjugate flows in the shallow water where
the boundary conditions are

η(0) = η(1) = 0. (13)

Due to the nonlinearity of the eigenvalue problem (12)–(13), an auxiliary condition
is required to determine η′(0). This is obtained from consideration of conservation of
momentum (Benjamin 1966; Lamb & Wan 1998), which requires that

M =

∫ 1

0

(p + u2) dz (14)



86 K. G. Lamb

is independent of x in a reference frame moving with the wave. For our application,
a comparison of the flow field in the conjugate flow and the flow field outside the
wave results in the auxiliary condition

T (η′(0)) =

∫ 1

0

(c − U (z − η(z)))2 η′3(z) dz = 0. (15)

Thus, η′(0) must be chosen so that this condition is satisfied. If the Boussinesq
approximation is not made then an additional factor of (1 + δρ ρ(z − η)) is needed in
the integrand (Lamb 2000). The solution of (12), (13) and (15) is a valid conjugate
flow solution unless η′(z) > 1 anywhere, in which case the solution is discarded. This
condition is necessary to guarantee that all streaklines extend to ±∞, an assumption
used to derive (7) and (15). If a solution with η′(z) � 1 cannot be found then the
upstream flow profile ρ̄(z) does not have a conjugate flow with open streaklines.

The nonlinear eigenvalue problem (12), coupled with the auxiliary condition (15),
can have multiple mode-1 solutions. As many as three mode-1 conjugate flows have
been found for some stratifications, only two of which seem to correspond to limiting
solitary wave amplitudes (Lamb & Wan 1998). As will be shown, for the stratifications
considered here, for sufficiently wide pycnoclines there can be three conjugate flow
solutions in the presence of strong background vorticity.

3. Effect of background currents on the existence of conjugate flows
Here we explore how the existence of conjugate flows is affected by background

currents of the form (5). A non-dimensional depth of 1 is used with z = 0 at the
bottom.

Lamb & Wan (1998) investigated conjugate flows for stratifications of the form
(4) in the absence of a background current. They showed that conjugate flows with
open streaklines exist only when the centre of the pycnocline is greater than a critical
distance r(d) from the upper or lower boundary. This can be understood in the
following way. For thin pycnoclines with a small density change (i.e. the Boussinesq
approximation is applicable), the centre of the pycnocline is always close to the
mid-depth in the conjugate flow (Lamb & Wan 1998). It is exactly at the mid-depth
for a two-layer fluid (Amick & Turner 1986; Lamb 2000). Thus, as the undisturbed
pycnocline moves away from the mid-depth towards a boundary, the larger the
displacement in the conjugate flow becomes. The velocity jump across the pycno-
cline increases more rapidly than the propagation speed of the front does. For a
pycnocline of finite thickness the point is reached when the conjugate flow breaks
(max η′(z) = 1). The distance from the boundary at which the conjugate flow
breaks down, r(d), decreases monotonically to zero as the pycnocline thickness d

decreases to zero.
For a fixed background current of the form (5), two curves can be found numerically

along which conjugate flows are at the breaking limit. Along z0 = rl(d), conjugate
flows of elevation are at the breaking limit (i.e. max η′(z) = 1), while along z0 = ru(d)
conjugate flows of depression are at the breaking limit. Usually, rl(d) < ru(d) and
conjugate flows exist only if rl(d) < z0 < ru(d), i.e. only if the pycnocline is sufficiently
far from the boundary. When there is no background current ru(d) = 1 − rl(d) and
rl(d) is always less than ru(d). It has been found, however, that for sufficiently
strong background vorticity the curves z0 = rl(d) and z0 = ru(d) cross once so that
ru(d) < rl(d) for sufficiently large d .
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Figure 2. Properties of conjugate flows at the breaking limit for different background currents.
(a) Background currents used. Parameter values are (s1, s2) = (0.2, 0.75) and ζ = −1.2, −0.8,
−0.4, −0.2, 0, 0.2, 0.4, 0.8, 1.2. (b) Plots of rl(d) and ru(d) for the background currents shown
in (a). Here, and in (c) and (d), the thick solid line is for the case with no background
current (ζ=0), while the dashed and thin solid lines are ru(d) and rl(d) for cases with non-zero
background currents. ru(d) and rl(d) both decrease as ζ increases. (c) Conjugate flow amplitudes
at the breaking limit. Amplitudes of conjugate flows of depression (dashed lines) decrease in
magnitude as ζ increases. Conjugate flows of elevation (thin solid lines) increase with ζ .
(d) Conjugate flow propagation speed. Propagation speeds increase with ζ .

In figure 2 properties of conjugate flows at the breaking amplitude are shown for
a number of background currents having different values of the vorticity parameter
ζ with the other two velocity parameters held constant (s1 = 0.2 and s2 = 0.75). The
currents are shown in panel (a), and the curves rl,u are shown in panel (b). In panel (b)
the solid thick curves are for the absence of a background current, while the thin solid
curves and the dashed curves are rl(d) and ru(d) respectively for non-zero ζ . Both
sets of curves move down (decrease) as ζ increases. In some cases (large ζ ) the curves
rl(d) and ru(d) cross, indicative of the existence of waves of elevation and depression
for the same stratification and background current. In figure 2(c) the amplitude of the
conjugate flow (extreme values of η) is shown. The conjugate flows of elevation are
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insensitive to the value of ζ . For these conjugate flows the centre of the pycnocline
is generally below 0.5 and is below the region of non-zero U (see figure 2b). It
should be born in mind that for d greater than about 0.3 significant stratification can
extend into the vorticity layer. Waves of elevation break at the bottom of the domain
where the vorticity in the background flow is negligible. In contrast, the amplitude
of the conjugate flows of depression are sensitive to ζ , decreasing in magnitude as ζ

increases. Waves of depression have positive wave-induced vorticity and break near the
surface. As ζ increases the vorticity of the background flow increases, enhancing
the vorticity in the waves and hence increasing the near-surface flow relative to c.
Thus, as ζ increases, the breaking amplitude decreases. This also explains why ru(d)
decreases with ζ . In figure 2d, the propagation speeds of the conjugate flows at
the breaking limit are shown. They increase with ζ , with those for conjugate flows
of depression increasing most rapidly. The large decrease of c as a function of d

is in part due to the decrease in the bottom-to-surface density difference. If the
propagation speeds are scaled by the square-root of ρ̄(0) − ρ̄(1) the conjugate
flow propagation speeds for d < 0.1 are virtually unchanged while at d = 1.2 they
cluster around 1.04 with a larger spread. Subtracting the vertically averaged back-
ground current reduces the spread by about one half.

Similar comparisons were made for background currents with fixed ζ and s2 for
different values of s1. For s1 between 0.2 and 0.05 the results were not very sensitive
to the value of s1.

4. Shoaling behaviour and the formation of waves with trapped cores
In this section the results of a large number of model runs are summarized.

Stratifications using four different pycnocline widths, d = 0.05, 01, 0.25 and 0.4, were
considered with either no background current or a background current of the form
(5) with velocity parameters (ζ, s1, s2) = (1.2, 0.2, 0.75) (see figure 2).

For cases without a background current and using pycnocline widths of 0.05, 0.1
and 0.25, a shelf amplitude aT = 1.5 was used, resulting in a deep-water depth of
2.5. The shelf width was L =5 and the horizontal grid spacing was δx = 0.05. The
computational domain extended between −100 and 100. For all other cases a shelf
amplitude aT = 3 was used, resulting in a deep-water depth of 4. The shelf width was 10
and δx was normally 0.2. The horizontal resolution was tripled for some runs to verify
the accuracy of the results. The computational domain extended between x = −100
and x = 200, except for stratifications with d = 0.4. The slower evolution of the waves,
in both distance and time, for these stratifications made a longer domain necessary
(see Lamb 2002). This is a consequence of a more linear stratification, which weakens
the nonlinearity, and the fact that for these stratifications the pycnocline tended
to be closer to the mid-depth. Thus, the shallow-water conjugate-flow amplitude
tended to be smaller, further weakening the nonlinearity. For these model runs the
right boundary of the computational domain was moved to x = 400. Even with this
extended domain, waves failed to reach a final form in some cases with Umax/c < 1.
Because Umax/c is decreasing with time, due to a decrease in Umax (c remains constant),
it is clear that they will not eventually form cores.

4.1. Cases with no background current

The results obtained without a background current are summarized in figure 3.
Here, the curve ru(d) is shown along with the curves (dashed) along which the
minimum Richardson number in the conjugate flow equals 0.25 and 0.5, the former
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Figure 3. Summary of shoaling wave simulations for cases with no background current. The
solid curve is ru(d). Along dashed curves the conjugate flow has a minimum Richardson
number of 0.25 (left curve) and 0.5 (right curve). Along dotted curves the minimum
Richardson number is 0.25 and 0.5 in the solitary wave at the breaking amplitude. For
these curves the minimum Richardson number is the minimum in the stratified portion of
the fluid, and is not necessarily the global minimum. Solid squares indicate stratifications for
which waves with trapped cores are formed after a sufficiently large initial wave shoals into
shallow water (Umax/c > 1). Open diamonds are stratifications for which waves with trapped
cores were not formed (Umax/c < 1) regardless of the initial wave amplitude. The open square
is for a stratification for which a large initial wave results in an unstable wave in shallow water
which has Umax/c oscillating between about 1 and 1.01 but for which no closed contours can
be seen in density contour plots.

having the smaller value of d . These are given for reference only. The ‘minimum’ value
used is that in the stratified region of the water column. The minimum over the whole
depth may be less, particularly for small d , in which case the fluid is very weakly
stratified near the lower boundary. For values of (d, z0) above z = ru(d), solitary waves
which can be numerically computed are limited in amplitude by the breaking limit,
or, for small d , by the stability limit. Below the curve z = ru(d) but above z = rl(d) =
1 − ru(d), amplitudes are limited by the conjugate flow limit except for points close
to, or below, the curve Ri = 0.25, in which case they are again limited by the stability
limit. As the centre of the pycnocline moves towards the upper boundary, so that
z0 increases, the conjugate flow amplitude increases and the minimum Richardson
number decreases. The conjugate flow amplitude is approximately |z0 − 0.5| for small
value of d .

Because only shoaling waves of depression have been considered for stratifications
without a turning point (i.e. z0 > 0.5), the curve rl(d) is not relevant and hence is not
shown in figure 3.

For a specified stratifications, with d and z0 fixed, let (d̃, 1 − z̃0) = (d/D(x), (1 −
z0/D(x)), where D(x) is the local water depth. The values of (d̃, z̃0) vary with depth
such that the point (d̃, z̃0) moves along a straight line, going through (0, 1) in
the limit D(x) → ∞. Thus, figure 3 can be used to determine limiting behaviour of the
initial deep-water waves. For this purpose, figure 2 also includes the curves along
which the minimum Richardson number (dotted line defined as for the conjugate
flow curves) in a solitary wave at the breaking amplitude is equal to 0.25 and 0.5. For
fixed d and z0, wave amplitudes are limited by the conjugate-flow limit in sufficiently
shallow water provided the pycnocline remains at or above the mid-depth (z̃0 close
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to 0.5). As the water depth increases the limiting behaviour switches to the stability
limit for large (1 − z̃0)/d̃ , or to the breaking limit for small (1 − z̃0)/d̃ . For the thin
pycnocline cases, d =0.5, the initial deep-water waves were limited in size by the
stability limit, which made it difficult to get waves to break as they shoaled.

The large number of model runs without a background current are also summarized
in figure 3. Solid squares indicate stratifications for which sufficiently large initial
waves evolved into waves with a trapped core after shoaling. These cases are all
above the curve z0 = ru(d), i.e. for stratifications without a conjugate flow with open
streaklines. Cases for which waves with trapped cores were not formed after shoaling,
regardless of the initial wave amplitude, are indicated by the open diamonds. These
cases are below or slightly above the curves z0 = ru(d). The open square indicates
a special case, discussed below. Details of some of the model runs are provided in
table 1. The table includes information on the initial and final waves, as well as on
whether closed density contours occurred in the final wave. Values of the minimum
Richardson number in the initial wave are also given. This value, as discussed above,
is not necessarily the global minimum but is the minimum value in the pycnocline,
and hence is due to high shear rather than low values of buoyancy frequency. For
stratifications in which the maximum initial wave is limited by the stability limit, the
maximum wave has a minimum Richardson number in the pycnocline of about 0.25.
The propagation speed of the final wave was determined by tracking the position
where the surface current was equal to 0.6.

In all cases shoaling waves steepen at the back as they shoal. If of sufficient
amplitude they overturn. The question is what happens afterwards. For stratifications
with wide pycnoclines (d =0.25 and 0.4), lying below ru(d), waves which overturned
formed a patch of surf at the rear of the wave which was gradually left behind.
For the large initial waves considered here, the leading waves arriving in the shallow
water had an amplitude larger than the maximum possible, conjugate-flow limited,
wave amplitude. They gradually adjusted towards a flat-centred wave by flattening
out at the front. Over time the flat part of the wave lengthened and the much larger
amplitude at the rear of the wave slowly diminished in size. Figure 4(a) shows an
example of such an evolving wave using the stratification (d, z0) = (0.25, 0.7). As z0

increases, the surf at the rear of the wave lasts longer and the adjustment to a final
state occurs more slowly. For stratifications with z0 above the critical curve, shoaled
waves have a persistent surf at the rear of the wave. Closed density contours form;
however, they are patchy and confined to the back portion of the wave for z0 close to
ru(d). They do not fill the whole wave. Shoaled waves have Umax/c > 1 for sufficiently
large initial waves. As z0 increases the closed density contours are better defined and
become more persistent (e.g. figure 4b). Figure 4(c) shows the final shoaled wave for
a stratification lying further above the critical curve ((d, z0) = (0.25, 0.86)). The region
of closed density contours fills more of the wave.

Figure 4(d–f ) shows waves at the end of three model runs for stratifications with d =
0.4 and z0 = 0.76, 0.77 and 0.82, all lying above ru(0.4) = 0.7413. Cases with d = 0.4
evolve more slowly than those with d = 0.25, requiring a longer domain. Note that
outside the wave core these waves are horizontally uniform, suggesting the existence
of conjugate flows with trapped cores. Such waves were also reported by Lamb (2002)
where for some stratifications shoaled waves with trapped cores appeared to have a
limiting wave amplitude.

For a narrower pycnocline thickness d = 0.1, for which ru(0.1) = 0.8395, the results
were qualitatively similar. For the stratifications below the critical curve, with z0 = 0.75
and 0.82, waves with trapped cores were not obtained. Initial wave amplitudes were
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Initial wave Final wave

d z0 a/b ηmax Ri c
Umax

c
c

Umax

c
Core

0.4 0.72 b 0.640 0.79 2.08 0.92 1.02 0.94∗ No
0.717 0.66 2.15 0.97 1.02 0.92∗ No

0.77 a 0.612 0.75 1.98 0.95 1.01 1.02 Yes
0.673 0.61 2.04 0.996 1.01 1.03 Yes

0.82 a 0.231 4.12 1.49 0.51 0.988 0.91 No
0.413 1.34 1.69 0.79 1.00 1.04 Yes
0.571 0.72 1.85 0.97 1.00 1.09 Yes

0.25 0.7 b 0.412 1.01 1.85 0.79 1.18 0.80∗ No
0.556 0.64 1.97 0.88 1.18 0.86∗ No
0.690 0.48 2.06 0.97 1.19 0.90∗ No

0.75 b 0.440 0.83 1.82 0.85 1.18 0.92∗ No
0.523 0.64 1.88 0.93 1.18 0.96∗ No
0.588 0.55 1.94 0.98 1.18 0.97∗ No

0.78 a 0.504 0.63 1.83 0.96 1.18 1.003 No
0.543 0.57 1.84 0.99 1.18 1.02 Yes

0.8 a 0.417 0.80 1.70 0.90 1.17 1.05 Yes
0.471 0.66 1.76 0.95 1.17 1.06 Yes

0.86 a 0.385 0.72 1.56 0.96 1.13 1.15 Yes

0.1 0.75 b 0.482 0.38 2.07 0.79 1.40 0.69 No
0.587 0.29 2.16 0.84 1.40 0.69 No
0.627 0.26 2.20 0.86 1.40 0.69 No

0.82 b 0.488 0.34 1.98 0.92 1.39 0.92 No
0.523 0.31 2.02 0.93 1.39 0.93 No
0.582 0.27 2.09 0.96 1.39 0.93 No

0.86 a 0.332 0.50 1.68 0.91 1.36 0.98 No
0.390 0.41 1.77 0.95 1.38 1.03 Yes
0.425 0.37 1.83 0.98 1.38 1.04 Yes

0.92 a 0.228 0.60 1.31 0.98 1.19 1.0 No
0.236 0.57 1.33 0.99 1.20 1.01 No

0.05 0.84 b 0.196 0.64 1.59 0.62 1.40 0.65 No
0.268 0.40 1.73 0.71 1.45 0.73 No
0.358 0.27 1.87 0.79 1.48 0.80 No

0.88 b 0.342 0.27 1.76 0.88 1.45 0.91 No
0.356 0.25 1.79 0.89 1.46 0.91 No

0.9 a 0.322 0.28 1.68 0.93 1.42 0.96 No
0.355 0.25 1.74 0.98 1.45 0.98 No

0.92 a 0.278 0.30 1.54 0.98 1.37 1.01 Yes

Table 1. Properties of the initial and final waves for cases with no background current. a/b
refers to position (above or below) relative to the critical curve ru(d) (see figure 2). Core refers
to the presence or non-presence of closed density contours. An asterisk beside the value of
Um/c for the final wave indicates that the shoaling wave had not reached a final form. See
text for discussion.
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Figure 4. Density contour plots of the leading wave after shoaling. Only density contours
for small values of ρ are shown. (a) (d, z0) = (0.25, 0.7), initial wave amplitude 0.690;
(b) (d, z0) = (0.25, 0.8), initial amplitude 0.471; (c) (d, z0) = (0.25, 0.86), initial amplitude
0.385; (d) (d, z0) = (0.4, 0.76), initial amplitude 0.717; (e) (d, z0) = (0.4, 0.77), initial ampli-
tude 0.612; ( f ) (d, z0) = (0.4, 0.82), initial amplitude 0.571; (g) (d, z0) = (0.1, 0.86), initial
amplitude 0.425; (h) (d, z0) = (0.05, 0.88), initial amplitude 0.356.

limited by the stability limit, with minimum Richardson numbers of 0.26 and 0.27 and
maximum values of Umax/c equal to 0.86 and 0.96 respectively. When wave breaking
occurred, the patch of breaking at the rear of the wave was rapidly left behind. For
a stratification above the critical curve, with z0 = 0.86, waves with trapped cores were
formed. An example is shown in figure 4(g). For a pycnocline closer to the upper
boundary, with z0 = 0.92, waves with permanent trapped cores are not formed. Initial
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Figure 5. Unstable solitary wave after shoaling for stratification (d, z0) = (0.1, 0.92) and initial
amplitude 0.236. As in figure 3 contours are shown for small density values only. No closed
contours are seen; however Umax/c oscillates between 1 and 1.01 suggesting some recirculation
may be occurring.

waves close to the breaking limit shoal to form what appear to be unstable waves in
the shallow water. Perturbations within the solitary wave appear in the front half of
the wave, grow and propagate to the rear of the wave. This cycle repeats (see figure 5).
During the course of each cycle the ratio Umax/c varies between slightly below and
slightly above 1.0. The smallest Richardson number observed in the near-surface
region of the solitary wave is about 0.244, slightly below the critical value of 0.15.

Some thin stratifications, with d = 0.05 (ru(0.05) = 0.8905) were also considered.
For stratifications with z0 = 0.84, wave breaking did not occur during shoaling. For
stratifications with z0 = 0.88 breaking occurred but no waves with trapped cores were
formed. The final wave with an initial amplitude of 0.356 is shown in figure 3(h). For
these two stratifications the largest initial waves had minimum Richardson numbers
of 0.27 and 0.25 respectively and hence were close to the largest possible (the waves
are bounded by the instability limit); however the initial values of Umax/c were 0.88
and 0.89, significantly less than 1.

Cases slightly above the critical curve with z0 = 0.9 also did not form waves with
trapped cores. For this value of z0 the largest initial wave that could be computed had
a minimum Richardson number of 0.25 and was close to breaking (Umax/c = 0.98).
If some way could be found to initialize the model with larger waves it is possible
that shoaling waves could form waves with trapped cores. For a stratification further
above the critical curve, at z0 = 0.92, waves with trapped cores were formed.

4.2. Cases with a sheared background current

We now turn to the results obtained with a background sheared current with velocity
parameters (ζ, s1, s2) = (1.2, 0.2, 0.75). In figure 6 the curves ru(d) and rl(d) for this
background current are shown again. Also shown are the curves for minimum
Richardson number in the conjugate flow equal to 0.25 and 0.5. The curves for
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Figure 6. As for figure 3 but for shoaling waves in the presence of the background current
(ζ, s1, s2) = (1.2, 0.2, 0.75). Minimum Richardson numbers in waves at breaking limit not
shown. See text for explanation.

solitary waves at the breaking limit have minimum Richardson numbers equal to
0.25 are not shown because the vertical profile of the Richardson number through
the centre of a solitary wave in the presence of the background sheared current
does not necessarily have a local minimum in the pycnocline. The bounding curves
ru(d) and rl(d) cross near d = 0.85, indicating the coexistence of a conjugate flow of
elevation and depression. Calculation of ru(d) showed some interesting behaviour.
For conjugate flows of depression the eigenvalue problem (12) is solved by specifying
η′(1) and integrating down, since for waves of depression wave breaking occurs at
the surface so it was expected that η′(1) would be close to 1 for stratifications with
z0 = ru(d). Indeed, it was equal to 1, indicating that breaking first occurs at the surface.
When considering T as a function of η′(1), one finds that there are two roots along
z0 = ru(d). For small values of d the first root is at η′(1) = 1 while the second root
is for a value of η′(1) greater than 1, giving an invalid conjugate-flow solution. As
d increases the second root decreases until at a critical value dc, slightly larger than
0.75, the two roots merge. For still larger values of d the first root is smaller
than 1 while the second root is at η′(1) = 1. This is illustrated in figure 7(a), where
T profiles are shown for three points along ru(d), namely (d, z0) = (0.766, 0.26545),
(0.76, 0.27514) and (0.75, 0.29038). The first two of these sets of values are to the
right of dc, the third is to the left. These illustrate that the first root rapidly decreases
as d increases. It is at η′(1) = 0.6, 0.32 and 0.18 when d =0.76, 0.766 and 0.768
respectively. It no longer exists when d =0.77. The small region of double roots
implies the existence of a region in which two conjugate flows of depression exist
simultaneously. In figure 6 the jump from the left- to the right-hand root is indicated
by the break in ru(d) near d =0.75.

Also shown in figure 6 is the curve z =A0(d) along which the conjugate flow
amplitude is zero. This curve was obtained by starting with the conjugate-flow
solutions along the curve rl(d) and then computing solutions for gradually increasing
values of z0 until the amplitude became extremely small. The values at which the
conjugate flow amplitude is equal to zero were then obtained via extrapolation. For
d < dc, decreasing z0 from z0 = ru(d) until the conjugate flow amplitude goes to zero
results in the same value of z0. For d > dc, moving off the curve ru(d) soon results in
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Figure 7. Profiles of T (η′(1)) for stratifications with a background current. (a) Profiles for
three stratifications along z0 = ru(d): (d, z0) = (0.766, 0.26545) (solid), (0.76, 0.27514) (dotted)
and (0.75, 0.29038) (dashed). (b) Profiles for three stratifications with d = 0.766. Curves are for
z0 = ru(0.766) = 0.26545 (solid), 0.2645 (dashed) and 0.267 (dotted).

the disappearance of solutions. This is illustrated in figure 7(b) where three profiles
of T are shown for three different values of z0 using d = 0.766. The solid curve,
for z0 = ru(0.766) = 0.26545, passes through T =0 at η′(1) = 1. When z0 is decreased
slightly to 0.2645 (dashed curve) the first root is at 0.2 while the second is greater
than 1. When z0 is increased slightly to 0.267 the two roots are at η′(1) = 0.65 and 0.8
(dotted curve). They disappear at about 0.2671. In particular, the second of the two
roots does not go to zero as z0 increases, as would be the case if the amplitude of the
conjugate flow solutions went to zero.

Note that unlike for figure 3, the use of a fixed background current to generate
figure 6 means that the figure cannot be used to deduce anything about limiting wave
amplitudes for the initial deep-water waves.

Figure 6 also summarizes the results of a large number of model runs of shoaling
solitary waves in the presence of a background current. As in figure 3 solid squares
indicated stratifications for which sufficiently large initial waves formed a core after
shoaling. Open diamonds indicate stratifications for which shoaling waves did not
form cores regardless of the initial wave amplitude. The open square is again for
a stratification for shoaled waves with Umax/c > 1, no closed density contours, and
appears to be unstable like the one depicted in figure 5. As for shoaling waves in the
absence of a background current, waves with cores were only formed in stratifications
with z0 > ru(d). Details of some of the model runs are provided in table 2. Minimum
Richardson numbers are not included as there often was no local minimum in the
pycnocline and hence the minima occurred at the lower boundary and were very
small.

The qualitative behaviour of the shoaling waves is similar to that for cases without a
background current and so are not discussed in detail. Note that the peak near-surface
background current is approximately 10–30% of the propagation speed of the waves
in shallow water (see table 2).

5. Summary
The presence of a background sheared current can significantly modify the prop-

erties of large-amplitude solitary waves. In particular, a surface sheared layer can
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Initial wave Final wave

d z0 a/b ηmax c
Umax

c
c

Umax

c
Core

0.4 0.54 b 0.525 2.375 0.88 1.13 0.94∗ No
0.616 2.456 0.96 1.13 0.95∗ No

0.58 b 0.488 2.299 0.88 1.14 0.97∗ No
0.517 2.327 0.91 1.14 0.97∗ No
0.593 2.399 0.98 1.14 0.97∗ No
0.636 2.438 1.01 1.14 0.97∗ No

0.64 a 0.366 2.099 0.80 1.15 1.02 Yes
0.532 2.278 0.98 1.16 1.02 Yes

0.68 a 0.177 1.823 0.55 1.15 0.96 No
0.264 1.928 0.69 1.17 1.01 No
0.330 2.005 0.79 1.17 1.04 Yes
0.429 2.119 0.91 1.17 1.06 Yes
0.506 2.203 0.99 1.17 1.07 Yes

0.25 0.64 b 0.551 2.441 0.96 1.31 0.92∗ No
0.598 2.490 0.99 1.31 0.91∗ No

– 0.67 b 0.451 2.288 0.91 1.32 0.95∗ No
0.568 2.424 1.004 1.32 0.95∗ No

0.72 a 0.396 2.147 0.92 1.33 1.03 Yes
0.478 2.253 0.99 1.33 1.04 Yes

0.76 a 0.300 1.946 0.85 1.33 1.006 No
0.366 2.041 0.94 1.33 1.03 Yes
0.419 2.115 0.99 1.33 1.08 Yes

0.1 0.74 b 0.419 2.343 0.88 1.53 0.85 No
0.484 2.432 0.92 1.53 0.85 No
0.562 2.531 0.96 1.53 0.85 No
0.606 2.583 0.98 1.53 0.85 No

0.78 b 0.401 2.255 0.92 1.54 0.95 No
0.458 2.341 0.96 1.54 0.95 No
0.506 2.409 0.99 1.54 0.96 No

0.82 a 0.376 2.146 0.97 1.55 1.002 Yes
0.406 2.195 0.99 1.55 1.02 Yes
0.424 2.224 1.006 1.55 1.03 Yes

0.86 a 0.200 1.722 0.86 1.46 0.97 No
0.252 1.833 0.94 1.49 1.02 Yes

0.05 0.82 b 0.405 2.26 0.91 1.62 0.92 No

0.88 a 0.335 2.054 0.98 1.63 1.09 No

Table 2. Properties of the initial and final waves for cases with a background current
(ζ, s1, s2) = (1.2, 0.2, 0.75). a/b refers to position (above or below) relative to the critical curve
ru(d) (see figure 5). Core refers to the presence or non-presence of closed density contours. An
asterisk beside the value of Um/c for the final wave indicates that the shoaling wave had not
reached a final form. See text for discussion.
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have a pronounced effect on waves of depression, changing solitary internal waves of
depression with open streaklines from being conjugate-flow limited to being breaking
limited if the near-surface vorticity of the background current has the same sign
as that induced by the wave. Furthermore, numerical evidence has been presented
which suggests that, at least for several stratifications from the important family of
stratifications with a single hyperbolic tangent pycnocline, the limiting behaviour
of waves with open streaklines determines whether or not waves with trapped cores
can be formed as waves shoal from deep to shallow water. Cases with no background
current and a background current with non-zero shear in the upper 25% of the
water column were considered. It was found that if waves in the shallow water have
a conjugate flow with open streaklines then shoaling waves will not form waves
with trapped cores. On the other hand, if waves with open streaklines are limited in
amplitude by the breaking limit in the shallow water, as large deep-water waves shoal
they form waves with a persistent surf at the back of the wave, if waves are close to
having a conjugate flow with open streaklines, or waves with a well-defined trapped
cores.

Two critical curves, given by z0 = rl(d) and z0 = ru(d) were z0 is the centre of the
pycnocline and d is the pycnocline width parameter (see (4)), were found along which
conjugate flows of elevation and of depression, respectively, are at the breaking limit.
As the background shear ζ increases (see (5)), both rl(d) and ru(d) decrease. For
sufficiently large values of ζ they cross, suggesting the existence of solitary waves
of elevation and of depression for the same stratification (this was not investigated).
The largest sheared current considered, with ζ =1.2, was investigated in more depth
and was used for the shoaling wave simulations. It had a maximum current of about
0.3 at the surface, approximately 20–30% of the propagation speed of the shoaled
waves. It was found that at a critical value of the width parameter, dc, less than that
at which rl(d) = ru(d), the character of the conjugate flows of depression changes.
When d < dc, as z0 decreases the conjugate flow amplitude decreases monotonically
to zero at z0 =A0(d) and there is only one conjugate flow of depression. When d > dc

there are two conjugate flows of depression and, as z0 increases, the conjugate flow
solution which is at the breaking amplitude when z0 = ru(dc) decreases in amplitude
but disappears before the conjugate flow amplitude goes to zero.

For the shoaling wave simulations attention was focused on values of d much less
than dc (dc ≈ 0.75 in background current, giving a nearly linear stratification). In this
case solitary waves in the shallow water are waves of depression provided z0 > A0(d).
Only such cases were considered. Solitary waves of depression with open streaklines
are limited by the conjugate flow limit if z0 < ru(d) and by the breaking limit if
z0 > ru(d), except for very small values of d in which case they are limited by the
instability limit. All waves steepen at the back as they shoal. For stratifications with
z0 well below ru(d), sufficiently large initial waves break at the back as they shoal.
The resulting surf is rapidly left behind. As z0 increases the surf lasts longer and as z0

becomes slightly larger than ru(d) a solitary wave in shallow water is formed that has
a permanent surf, with closed density contours, in the rear portion of the wave. As
z0 increases still further the region of closed density contours fills more of the wave
until eventually the shoaled wave with a trapped core is almost symmetric about the
centre of the wave.

Although dissipation and mixing were not considered, these results give some insight
into dissipation processes associated with shoaling solitary waves. For stratifications
for which conjugate flows far from the breaking amplitude exist in shallow water,
the surf associated with overturning waves is rapidly left behind. As the conjugate
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flows approach and pass the breaking amplitude the surf persists for longer times
and distances. This has implications for the distribution of mixing associated with
shoaling internal waves at the shelf break. An investigation of the energy dissipation
and mixing associated with shoaling waves will be the subject of future work.

In the absence of a background current, waves with trapped cores are formed
only when there is significant stratification at the surface. Because a surface mixed
layer is normally present, waves will usually be conjugate-flow limited with the
result that mixing will occur near the region of depth change. The presence of a
background current, with near-surface shear and wave-induced shear of the same sign,
makes waves with trapped cores possible in stratifications which could otherwise not
support such waves. Figure 8 shows all the stratifications considered. Solid lines show
cases for which shoaling waves with trapped cores were formed. Dotted lines
show stratifications for which waves with trapped cores were not formed. The effect
of a background current increases as the pycnocline becomes thicker. This is perhaps
not surprising as wider pycnoclines can be moved further down for the same reduction
in stratification at the upper boundary.

Typical ocean stratifications are perhaps more likely to support mode-2 waves with
trapped cores. Such waves are easily generated in the laboratory (e.g. Davis & Acrivos
1967); however to the author’s knowledge no observations of such waves have been
made in the ocean. The role of such waves in the ocean warrants future investigation.

One model run was made with a double shelf using the stratification (d, z0) =
(0.25, 0.7) and no background current. The deep-water depth was 5. The water depth
decreased to 2.5 where it was held constant before then decreasing to the final deep
water depth of 1. In the shallow water ISWs are conjugate-flow limited (see figure 3).
In the intermediate region (d̃, z̃0) = (0.1, 0.88) and from figure 3 it can be seen that
ISWs are limited by the breaking limit. A deep-water wave with an initial amplitude
of 0.85 and with Umax/c = 0.98 shoaled to the intermediate depth where a wave with
a trapped core was formed. After shoaling to the shallow-water depth the trapped
core disappeared as the wave evolved to one with a flat centre with Umax/c < 1.

The numerical calculation of conjugate flows for a specified stratification and
background current is computationally very cheap and provides a simple means to
determine whether waves with trapped cores can exist.

This work was funded by a grant from the Natural Sciences and Engineering
Research Council of Canada.
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